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Divided Differences, Shift Transformations 
and Larkin's Root Finding Method 

By A. Neumaier and A. Schafer 

Abstract. For a one-dimensional complex-valued function f this paper deals with iterative root 
finding methods using divided differences of f. Assuming that f is given in a Newtonian 
representation we show how Homer-like transformations ("shift transformations") yield the 
divided differences needed in each iteration step. In particular, we consider an iteration 
method given by Larkin [5] and derive an equivalent version of this method fitting into this 
context. Monotonic convergence to real roots of real polynomials is investigated. Both 
"shift-" and "nonshift versions" of several root finding methods are tested and compared 
with respect to their numerical behavior. 

1. Introduction. In some region D of the complex plane C we consider a 

meromorphic function f: D -+ C of the variable x E D. Proceeding from an ap- 
propriate Taylor expansion of f, one can obtain several well-known root finding 
methods using a set of derivative values. Examples are Newton's method, Euler's 
method, etc. Several corresponding methods (for example, the secant rule, Muller's 
method) which avoid the evaluation of derivatives and use instead divided dif- 
ferences can be derived similarly from a Newtonian expansion of f. It has been 
emphasized frequently that such methods are in a sense more economical (see, e.g., 
Traub [6]). Conditions on which a function f can be represented in a unique 
Newtonian form are specified in Section 2. We also give some special Homer-like 

algorithms ("shift algorithms") transforming f into suitable forms. An appropriate 
sequence of these transformations will then provide all the divided differences 
needed during an iteration process (see Section 3). 

In [5] Larkin suggests an iterative root finding method which is derived from 

approximating f by rational interpolation and can be carried out by constructing 
divided differences of the function f:= l/f. Again considering special Newtonian 

expansions of f and f, we obtain an equivalent version of this method which uses 
divided differences of the original function f. In case f is a real polynomial having 
only real roots, monotonic convergence to the largest (respectively, smallest) root is 

proved in Section 4. 
In Section 5 we apply shift transformations to determine all the roots of a given 

polynomial f. Convergence to a certain root automatically yields f in deflat'ed form. 
In practice it is somewhat dangerous to compute new representations of f iteratively 
since accumulated rounding errors may cause the roots to be changed gradually. 
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However, an appropriate choice of expansion points will reduce the sensitivity of 
some roots with respect to perturbations of f; thus, we can hope that later 
transformations will not affect the zeros too much. Numerical examples show that 
for some common initial representations of the given polynomial our approach 
yields rather satisfactory results. 

2. The Newtonian Form. In the sequel let m andj denote nonnegative integers. For 
any m complex numbers Xk, k = 1(1)m, we define 

in 

)(X; X1, X2,@ . *sXm):= 7 (X -Xk), X E C. 
k=1 

For a finite sequence of points Zk E C, k E Z, we also use the notation 

z f(X; Zi, Zi+1, . . ,z,), if i j 

ij\ 1, if i=j+1. 

The degree of a polynomial p is written as deg p, and the space of polynomials p 
with deg p < n is denoted by Pn. 

First we give a lemma which is fundamental for all following considerations: 

LEMMA 1. If the function f: D -* C is analytic at Zhk e D, k = j- m(1) j, then there 
exist both a function r: D C which is analytic at the points Zk and a polynomial 

J 
(1) pn'(x) = E ffi?+?1,j(x; z) E Pm 

i=j-int 

such that 

f(x) = p. (x) + r(x)w1> m j(x; z). 

The functions pn, and r are unique. 

Proof. With rj(x) := f(x) we define for i = j(-1)j - m recursively 

r,(x) - i(zi) , 
ifx i 

(2) ri-,(x):= x x 

trA z i), if x = zi. 

With f, all the functions ri constructed by (2) are analytic at Zk, k = - m(1)j. 
Setting 

f,1:= r,(zi), i =j-mf(1)j, 

r(x):= rj_m_l(x), 

we have r (z,) = r,(x) - 1>1(x) * (x - zi) and 

E r1(z1) *o,?1,,(x; z) + r1_n,_(x) * jmjX z) = ty(x) = f(x). 
i=j-- n1 

Thus, from definition (3), we obtain f in the required form (1). The uniqueness of Pm 
and r follows by antithesis. 

Let both f = p, + r * wj-n, j and f = f. + r*j-m j be representations of f 
according to (1). We assume p #j,. Since r and r are analytic at Zk, k = j - m(1)j, 



LARKIN'S ROOT FINDING METHOD 183 

the same holds for the difference 

r - r = (Pm -Pm)/t -m,j. 

However, we have 0 p,,, - Pn E Pm, and deg "j -m,j = m + 1. Therefore the func- 
tion r - 'r has at least one singularity. This contradiction yields Pm Pm and, hence, 
r--r. o 

We say that the function f given by (1) is "represented in Newtonian form with 
respect to the base points Zk, k = j - m(1) j". 

Remarks. 1. In case the points Zk are pairwise distinct, Pm is the unique Newtonian 
interpolation polynomial coinciding with f at Zk, k =j - m(1)j. Using the well- 
known notation for divided differences (usually defined according to (2) and (3) (see, 
e.g., Traub [61)), we have 

(4) fij = f IZi, Zi+i, .,Zjl, r(x) = f [x, Zj,m Zj-m+l,... *Zi]. 

It is evident that for fixed i and] the valuef,j, is independent of the size of m > j - 

so fij does not change if f is expanded in Newtonian form (1) with respect to 
additional points Z-,n- 1l Zj-m-2-- 

2. If Zk = Z for k =j - m(l)j, then (1) corresponds to the Taylor expansion of f 
at the point z. The coefficients then are 

fiJ = ( j ! Z 

3. Forf e P,, and m = n the remainder function vanishes identically: 

r(x) 0. 

In this case we have f = p,, with p,1 given by (1). If, moreover, Zk = 0 for k = 

j - m (1) j, then f = p,1 has the standard form 

P,1((x) = 

LEMMA 2. Let two functions f, p: D C be given in the form 
J 

f(x) = f,jt,o(x; Zi+1 Zi+2 . * ,Z) + r(x)t.(x; zj 1,zj-,,1+,. . . ,Zj) 
.=,. , 

and 
j+?1 

cp(x) = E q,ij+1W(x; zi+l,. . . rz1 A) + r(x)&(x; z1 ,,+1,. . . ;,z1 
i=j-? 1w 

where X E C. If r and r are analytic at ZjmS Z 1 ,1,. .. ,zJ, then f and p represent the 
same function if and only if 

(i5+1,? =fIj +(A-Zi)q A+1, i =j - m + I(I)j, and 
A = fj, j,,j + r(x)(x - zim) - (x)(x - A). 

Proof. (a) Let f T. We write 

f(x) = pn,(x) + r(x)(x - z;-o1)w1,1 1(x; z), 
cp(x) = 7r1(x) + r(x)(x - A) * &.1j+? ,(X; Z) 
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and set 

d(x):= r(x)(x - zj_m ) - r Ax)(x ) - pA(x) - 
rT(X) 

Since d(x) is analytic at the roots Zj-m+ 1 Zj-m?2 + . ,Z; of j- m+1 ;, the polynomial 
Pn1- Vn, must vanish at these points, and deg( Pm -Tm) < deg wj- m+ 1,j implies that 
d := d(x) is a constant. Thus we may define 

fj-ntj = Pj-m+1.j+l - d and fij:= qPi+, -(X-z) * i4+l 

for i = j-m + 1(1)j, obtaining 

(p(x) = [/f-m,j + r(x)(x - Zj-m) - r(x)(x -)] w-m?+,j(x; Z) 
,j?1 

+ , fi_ o ,_1 * 1 (x; z) + r(x)(x - A) w*j-,+j(x; z) 
i=j-mz?+2 

- E Lijwi+l1j(x; z) + r(x)(x - Zj-m)wj-m+l,j(x; z). 
i =j /-??I 

This is a representation of f in Newtonian form (1); Lemma 1 guarantees that the 
coefficients fij are unique. Hence we have fj = fij for i = j - m(1) j in accordance 
with statement (5). 

(b) Conversely the assertion f p follows from (5) by direct calculations analo- 
gously to part (a) of this proof. O 

Remarks. 1. The analyticity of r and r at x = A is not required. 
2. If in addition r is analytic at A, thenJf -p yields r(X) = r(zj 
The relations (5) can be used to transform the Newtonian representation 

f(x)= f fiji+,w j (x; z) + r(i)(x )j-mj(x; z) 

into 
j+1 

(6) f(x) = f fi,+lwi+,,j+1(x; z) + r(j+')(x)>w-m?+i,+i(x; z), 
i = j-Z ?+ 1 

where the base points are "shifted" by deleting Zj-m and adding the new point z1+ 1. 
We call this the "shift transformation" of f(given by (1)) with shift zj+ 1. 

From (5) we get the following Horner-like scheme for computing the new 
coefficients of the polynomial part of f. 

Shift algorithm: 

fj-m,j+= r(=)(Zj+l) 

fi+li+l =fij + fi,j+l(z+- zi), i =1 - m(1)j. 
The special case of f E' P,. Let f E P, n > 0, be completely represented in 

Newtonian form, i.e. 

J 

f(x) = E fi.joi+l(x; z) + r(j)(x)wjj- j(x; z), 
i=j-nm 
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with the remainder function 

-rn-i 

r"j'(x) = iji+i -m-i(x; Z) 
i = -,, 

expanded with respect to base points Z-n Z -n+1" ,Zmi With notation (4), the 
coefficients of r(i) are 

fi 
= f [z1, Zi+19* * *Z-i?- Zj-m, Zj-m+l ... , Z1], i = -n(1) - m - 1. 

1. For m = n (which implies r(i) 0), a shift transformation leads to new 
coefficients j+ 1 i = j - n + I(I)j + 1, which are completely determined by algo- 
rithm (7,,,=,7). In particular, we have the same leading coefficient in both representa- 
tions: f,-71+ 1j+1 = 

fi-n,j. 
If Zk = 0, k = j- n(1)j, then (7n) is the usual Homer 

algorithm for the evaluation of f at zj+ 1. 
2. For m < n, we may keep the base points Z-n Z-n+l ,Z,-1 fixed, whereas 

ZJ-111 Zj-1+1 .. .z .J are shifted as prescribed above in order to transform f into (6). 
With the notation n := f1- n,, the new coefficients 

.i + I f [zig Zi+l,... ,z-n-1, ZI +j- i'*+l9 ,z,+1]J i = -n(1) - m - 1, 

and the coefficientsf,j 1+, i = j- m + 1(1) j + 1, can be computed by the 
partial shift algorithm 

f-117 j+1. f n,il, 

(8) fi+ l+l :=fi+ + fj+ l(zj+l - zi) + f1j(zi - Zj-m), i = -n(1) - m - 1, 
(8) /2-m+1,j?1 = f-n,j+l 

i+l,.j+l =fij +f ,j+l(z1+1 - Z,), i =j - m + 1(1)]. 

3. A transformation of 

0 

f(X) = Pn (X) = fi0@i +1,0 (X; Z) 
i = -fl 

into a new expansion 

0 

(p(X) = q )i0'i+1,0(x; X ) 

with n + 1 arbitrarily chosen points 1 ,,, g-n+l?...1'0 may be carried out in the 
following way: 

We expand a(?)(x) := f (x) with respect to Z-n+l, Z_n1+2'... 9z0, *0 i.e., we apply a 
shift transformation (7,7) with shift 0. Renaming the new representation by a(') we 
have p_ = a'(1) (O) and rewrite a(') in the form 

f(x) = .oo + a(23(x) *(x- ) a 2= Pe 

Application of (77- 1) to the polynomial a(2)(x) with shift g-j yields 9 -lo a=(2) (_) 
and f(x) = qDOO + [qP-_ 0 + a(3)(x)(x - ?-,)](x - t0). Iteration of this leads to the 
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general Horner algorithm (see Werner [71): 

a():= fk0 o k = O(1)n 
(i+l) a(i) 

(9) A := a +( _ - zk+i)a(k+?), k = - i O(l)n. 
_ :,= aj +), 

3. Application to Root Finding Methods. In this section we describe how shift 
transformations may be applied to approximate zeros of a polynomialf E P,. 

Many well-known iterative methods use divided differences of f: Starting with a 
number of appropriate estimates z-mS Z_m+1.'" ,zO, thejth iteration step of an mth 
order method consists in 

(1) the computation of valuesfij = f[zi, Zi+,. *,zj] forj - m < ij, 
(2) the construction of a new approximation zj+1 (according to the method 

employed). 
Subsequently, the point Zj-m is deleted, so that the m + 1 latest approximation 
points are always used. A large number of such methods is described by Traub [6], 
who introduced so-called "one-point iteration functions with memory". 

We assume that f E Pn is given in (or can be transformed into) Newtonian form 
(1) with j = 0. The divided differences needed for the construction of z1 are the 
coefficients fjo, i = -m(1)O. A transformation of f by "shifting" the expansion 

points z z,- 1 m + I ,zO to z-m, . . . ZO, Zl yields the new values fil for i= 
1 - m(1)1. A proper algorithm is given by (7). Continuation yields all the divided 
differences needed in the iteration process. In particular, we may permit the cases 

Zj_ 7??I = Zjm+= ... = zj and define zj+m+?:= zj+m:= ... := z1+I applying 
m + 1 transformations, each one with the same shift. We then obtain derivative 
values in place of divided differences. Therefore, Newton's method, Euler's method, 
etc., are covered by our approach. Note that no division is necessary for a 
transformation. This prevents amplification of rounding errors which might occur in 
case of division of small differences. 

Several root finding methods may be derived by considering the Newtonian 
interpolation polynomial 

J 

Pm(X) = E fij'tOi+1 j(X; Z) 
i-j-ml 

which coincides with the given function f(x) = pm(X) + r(x)@ m j(x; Z) jat the 
points Zj-m, Z1-+i,.M zj. The new estimate zj+I is defined as a solution /3 of the 
equation 

(10) Pm(X) = 0 

or, if this is not practicable, at least as a reasonable approximation to /8. 
In case m = 1 Eq. (10) reads 

fjj + fij 1,j (x - zj) = 0 

and this leads to a regula falsi step 
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with convergence order 1.62 (we always indicate the order of convergence only for 
the case of simple roots). 

If zj= z holds in (11) then >1 = f '(zj) and we have one step of Newton's 
method (convergence order 2). 

In case m = 2 we obtain Muller's method (see, e.g., Traub [61, where the 
derivation of Muller's iteration function is based on Newtonian interpolation of f): 
Starting with given points Z 2' Z-1, ZO E D the iteration is defined by 

wj:= fj-1, + fj-2,j(zj -zj- 1) and 

(12) 2fjj 
Zj+ i:= z- j 

wj? nv 7-fJi2 

for j = 0,1, 2,..., where the sign of the square root is that of wj. The order of 
convergence is 1.84. If Zj_2 = Zj-1 = zj, then the divided differences ft 1 j and 

fj-2,j 

coincide with the derivatives f '(zj) and 2f "(zj), respectively. Then formula (12) 
corresponds to Euler's method (convergence order 3). 

However, in general, the cost for calculatingf '(zj) or f "(zj) is as high as for f(zj) 
itself; in our case these values might be obtained by several shift transformations of 
f, each one with the same shift zj. For example, two transformations are needed in 
order to perform one Newton step (convergence order 2). With a similar number of 
arithmetical operations two regula falsi steps can be carried out and yield conver- 
gence order (1.62)2 = 2.62. Similarly, in case m = 2 three Muller steps (convergence 
order (1.84)3 = 6.22) will lead to a better result than one Euler step. A variant of 
(12) (again with convergence order 1.84) which avoids the calculation of a square 
root is suggested by Traub [6]: 

(13) Zj+ := z- 11, fi 
f1-14 -fj---1j-lfi-2,j 

A generalization of (12) results from modifying a family of root finding methods 
described by Hansen and Patrick [2]. With w; from (12) and a E R we define 

(a 
+ 

1)Ifj; ifa 
# 

-1, 

(14) zj+1 = awj wt - 2(a + 1)fjjfj12, 

tZj - fjjWjl( y2 - fjifi-2 i) if a = -1. 

It can be shown that the order of convergence is 1.84 independent of a. 
The caseZj-2 = Zj-1 = zj corresponds to a Hansen/Patrick step. As remarked in 

[2] some special values of a lead to well-known iteration methods; e.g., we have for 

a = 1 Euler's method, 
1 1 ,a = _ 1 Laguerre's method (iff E Pn) 

a = 0 Ostrowski's square root iteration, 
a = -1 Halley's method, 
a oo Newton's method. 

For finite values of a the Hansen/Patrick methods have convergence order 3. 
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In (14) the case a = 1 is equivalent to a Muller step (12). If we replace wj in (14) 
by fj - l,. and set a : -1 we obtain Traub's formula (13). 

Since rounding errors in the coefficients of the Newtonian form usually will 
influence the accuracy of the computed roots, we end this section with a result from 
perturbation theory. For simplicity, we confine ourselves to the case of simple roots 
of a polynomial 

J 

f(x):= E f.jwi+l?j(x; z) e P,l. 
i=j-,l 

From numerical computations we may obtain the polynomial 

J 

f x) := E !iiXCi+ l,j(x; z ), 
i=j- 11 

where the coefficients1ij differ from the exact data fj, by 

/ti= tii - fij i = j - n (I) j. 

If some bounds are known for Afij, i = j - n(I)j, then the following lemma may 
help to answer the question whether a root X of f is still a "good approximation" to a 
root of f. 

LEMMA 3. If X is a simple root of f, and if f '(A) # 0 then there exists a root A of f 
with 

i n 
X ()f,1)1.i,?1jX; z) 

Proof. This follows immediately from Laguerre's Theorem (see, e.g., [3]), which 
implies 

IA A n - If (A)/f '(X)|, 
- - -I - 

and fromf(X) = f (X) - f(X) = E j1-n(Af,)4ji+1j(X; z). E 

Remark. For a polynomial f of exact degree n the following condition number of a 
simple root X # 0 is suggested by Gautschi [1]: 

I J 

cond(X):= 1 fif) .KCj+1.j(X; z)j. 
lxi if1(/X)I i=J-,,?i 

It indicates the sensitivity of A with respect to small perturbations Afij in the 
coefficients f,j, i = j - n + 1(1)j. The error Afj - n is assumed to be zero. We see 
that the size of cond(X) depends on the location of the base points Zj-n+l, 
Zi-n+2... . ,Zj and becomes small, for instance, if zj is close to A. If there are bounds 
for Af,.j of the form 

lAfiil < 8 Ifijl =j j-n + 1(1)j, 8 >, 0, 

then we get from Lemma 3: 

(15) - A< n * 8 cond(A) + 0(82). 
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4. On Monotonic Convergence of Larkin's Method. In [5], Larkin suggests a class 
of methods (from rational interpolation) to approximate simple zeros of meromor- 
phic functions f: D -+ C. The rational function interpolating f at the m + 1 points 
Zj-n? ZJ-,+1*** ,zj has the form 

(16) (x - #)IQ(x), 
where /8 E C and Q E Pm-l' Q(/3) + 0. The new approximation zj+I to the required 
zero of f is defined as the unique zero /3 of (16). Henceforth, we exclude the trivial 
case that f( zk) = 0 for some k, j - m < k < j. Larkin gives a simple scheme for the 
computation of z1 +I in terms of the function 

f(W:= f (x) 

and its divided differences>_m,k = f[Zj-m Zj-m+l- . *,Zk], k =j - m(1)j. 
In our terms we can write the functionf in Newtonian form similar to (1) but with 

the base points in "reverse order": 

(17) f(x) E 4j-n7,ioj-m,i-1(X; Z) + i(x) . ym,j(x; z). 

For 4 - f?,,j 0 a " Larkin step of order m"is defined by 

(18) Zj+ := zj + fj-n,,j-i/fj-m,j; 

as is shown in [5] z1+I is the unique zero of (16). 
An iteration method based on formula (18) may consist of Larkin steps of various 

order, e.g., one can start with initial points z-1, z0 (m = 1) and add the new estimate 

zj+1 in each step without deleting zj-__ (m -+ m + 1). Thus all the previous 
information is used during the iteration. Asymptotic quadratic convergence for this 
procedure is proved in [4]. For fixed m the order of convergence is given by the 
positive root of tm - E"7L t' = 0. 

The following special cases show that this class of methods contains iteration 
functions similar to those in Section 3. Moreover, we obtain from Lemma 4 below, 
that a Larkin step can easily be carried out applying divided differences of the 
function f directly. 

Special cases. If m = 1, then formula (18) results in a regula falsi step (11) applied 
to the functionf. 

The case m = 2 leads to 

Zj+1 := - ~fj-2,j1-f1 ZJ+l = ZZ 
fj-2,j lfj-1,1 - fj-l,j-lfj-2,j 

which is quite similar to (13). 
The next lemma shows how the coefficients fij of the Newtonian form (1) are 

related to fi-,n, k of (17). 

LEMMA 4. Let the functions f, f: D -- C with f = 1/f be analytic at the points zj-m 

zJ n1"+ 1., z,. Iff and f are given in Newtonian form (1) and (17), respectively, then 

fijfj-m i = 

for m > O. 
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Proof. Writing f = Pm + r* cj-,,,j andf = Pjm + r- * - m , we have 

J 

Pm(X)pn,(X) = ? fijf4mji- jmji(x; Z)Oi+1j(X; z) 
i,l= j-rn 

= Pm(X) + r(X))w_.,1(X; Z), 

where 

Pm(X) = ? fii nii-mii(x; 
z)mo+l 

j(x; z) e 
I< i <j 

j - / 

and 

r(x)= ? fijij_mjwi+i,ii(x; z). 

i < I j 

Rewriting Pm in the form (1) with respect to the points Zjm Zjm+1 . we 
obtain 

J 

Pm,(x) = P-m,1(X) + wj_m+?,i(x; Z) ? fijij-m,i 
i = j-ml 

with a unique polynomial Pm-l E P Thus we have 

ff = Pn-l + cj-m+,j* fJ-m,i +(r + pmr +pmr + rr m.j)w-m j 
i-j-mn 

which is a unique Newtonian representation (1) of the product ff. Since f1 = 1, the 
remainder function in parentheses must be zero just as all the coefficients of the 
polynomial part except for the constant term. In particular, we obtain 

? ifj-m,i = ? . 
i=j-m 

If the divided differences fk = f [Zi, Zi+1... 9zk] are given for k = j- m + l(1)j 
and i = j -m (1)k, then one step of Larkin's method can be performed as follows: 

With arbitrary f7 m j- m 0 0 we compute the values f7-r mk for k = j- m + I(I)j 
recursively from 

(19) A fikfj-ni ? 
i =l -m 

and define 

Zj + Zj + fjj-rnj-l/fi*-m,j* 

This is equivalent to (18) since the valuesfjLm,j differ fromfj Im, only by a common 
factor depending on the initial choice of f7 inj- m. 

Remark. For fixedj > 0 and k = j - m + I(I)j we define the points 

Zk+1 k Zk + fI-nm,k-1l/fI-m,k 

according to Larkin steps of order k + m - j. In particular, we have z = zj. 
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Writing equality (19) as 

k k f* 
z fik H -rn-1= 0 
E. 

:r 
jfm I1 

i-j-fl l=i?l fj-m, 

we obtain 

k k 

(20) E fik H (Z/1 ZI) =? 
i =j - nl l=i+l 

for k = j - m + 1(1)j. Note that (20) yields another algorithm for the construction 
of z = z7*+1 by computing the differences Z?+1 - Zk from linear equations. It 
shows that one Larkin step of order m is composed of m steps of lower order. 

We now assume that f E Pn has real coefficients and only real roots A1 < A2 < 

* ** n A,1. If one starts Larkin's method with initial points Z,m Z-m+1 . . , R, 
then all the approximations zJ odnstructed by (18) will be real. Our goal is to prove 
that if all initial points Z,m Z-m+1. ,zo exceed A,, then we have monotonic 
convergence to the largest root A,, of f. (Of course we then also have monotonic 
convergence from below in the "dual" case Zk < A1, k = -m(1)0.) 

It is necessary for monotonicity that the correction terms fj m,j- /lif- m,j always 
have the same sign. This property will be shown in Lemma 6 by induction with 
respect to the polynomial degree n. We write f in the form 

f(x) = (x - A)g(x) 

or, equivalently, 

g(x) = (x - A)f(x), 

where g:= 1/g, f:= 1/f, and x * A. The next lemma gives a general relation 
between the coefficient of g and f in case both functions are represented in the 
form (17). 

LEMMA 5. Let the function f: D -- C be analytic at 
Zj-m Zjmi * 

m+ 
. zj, and let 

g: D -* C be defined by 

g(x):= (x - A)f(x), A E C. 

Then f and g can be represented in Newton form (17) with respect to zk, k= 
j - m(l)j, and 

(21) rj-n?j = fj-mi-l + (Zi - 
XM i 

for =j-rm + 1(1)j. 

Proof. We write f(x) = pm(x) + rf(x) wjmj(x; z) with 

P =(X) E fi-miA"j-ji 1(X; Z). 
i=j-mn 



192 A. NEUMAIER AND A. SCHAFER 

The function g (which is also analytic at Zk, k = j- m(1)j) is uniquely represented 
in Newton form (17) by 

J 

g(x) = g ',W t1li_(x; z) + r,(X)4.j_., j(x; z) 
i=j- ti 

= XE frjrn,(X - i(X-A)w1...nt 1(x; z) + r1(x)(x - J )w ,,j (x; z) 
i =1 - /i 

=~~~~ - 
1j-mi (X; zJ-mg Zj-n2+P... -Zj-21A 

i=j-ni+ 1 

+ (r1(x)(x - z,) ?f1-n1)W(x; Zj-m Z1,,+l, ,Zj_ A)- 
From Lemma 2 we get 

f-m,i-i = gN,+( z j-nt(i i =] - m + 1(1)j. O 
Remark. As in Lemma 2 we do not require g to be analytic at x = A. 

LEMMA 6. Let f E P, be a real polynomial with real roots A1 <s A2 < ... AnX Let 
the function f = 1/f be represented in Newton form (17) with respect to the points zJ1,1, 

zi-111+11* .z1. If 
(22) Zk > 

holds for k = j -m (1) j, then 

(23) (J.) ) > 0 

fori =j - m(1)j. 

Proof. (a) Inequality (23) obviously holds for n = 0: In case f 1 we have 

i2na - 1J = 1 > 0 andf! n = 0 forj - m + 1 < i < j. 
(b) We assume that (23) is valid for all polynomials g E Pn.1, i.e., with g = l/g 

we have (-l)i-(I-,l)gj-,3 i1-g1,]-m > 0 for m > 1 arbitrary and i = j- m(1)j. 
We set f(x):= (x - A)g(x) e Pn with A e R, A < Zk for k =j - m(l)j. Then 
f = 1/f is analytic at the points Zk, and since g(x) = (x - A)f(x) we get from 
Lemma 5: 

z. lXi-(j) - j-i " zi X fi=n 1.Xifj-m,fj-mj- 

From f7. nt i-nl > 0 it follows (by induction with respect to i) that the above 
expression is nonnegative for i = j - m(1)j. 11 

Combining Lemma 5 and Lemma 6 we obtain the announced monotonicity 
property of Larkin's method: 

THEOREM. Let f E P,, be a real polynomial with real roots A1 < A2 < ... * An . If 

Zk > A,, holds for all initial points Zk, k = -m(1)0, then a sequence defined by (18) is 
monotonically decreasing and converges to A,. 

Proof. We shall show that the assumption (22) 

A,, <Zk fork=j-m(l)j 
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(which holds in case j = 0) implies AX < z1< zs , so that monotonic convergence 
follows by induction. Writing f in the form f(x) = (x - An)g(x) we have from 
relation (21) and definition (18): 

An + f- = z f+ -rn = J+ 

Inequality (23) yields I>i-I lfi n,j < 0 and, again from (23), we obtain 
?> 0, since f and g have the same sign at Zj-m This implies AX 

< Zj. The monotonically decreasing and bounded iteration sequence tends to a limit 
A* > A,n. Thus limj ,,(z1+1 - zj) = 0 and setting k = m in relation (20) we have 

lim.j,*f0( zj) = 0. The continuity of f implies f(A*) = 0. Hence A* = An,, which 
completes the proof. O 

It can be shown that Larkin's method also converges monotonically to inter- 
mediate roots of real polynomials with only real roots provided that we choose the 
order m even, and the starting points between two roots such that special initial 
divided differences have the same sign. One can use this property to determine the 
most sensitive roots first. 

5. Numerical Tests. We consider always real polynomials f E P, with real roots 

XI < A2 < ... * An. The monotonic behavior of an approximation sequence { zj}, 
j > 0, yields a simple criterion for the termination of the iterative approximation of 
a root A of f. For example, if A < zj+ 1 < zj holds theoretically, then we stop iterating 
as soon as the computed values satisfy zj+I > zj. Then we may regard X := Zj as an 
acceptable approximation to A with respect to the machine accuracy. If shift 
transformations (7,,) are applied to f during the iteration, then we obtainf in the form 

(24) f(x) = f(X) + (x - X)g(x) 
with the deflated polynomial 

j-l 

g(x) = E fijWi+ 11(x; z). 
i=j-n 

By deleting f(X) 0 we can immediately continue with g(x) to approximate 
another root of f. If, for example, A,n is approximated from above, then the points 

Zj-t-i ZJ- z1... zj-l exceed the largest root AXn1 of g. If we choose these iterates 
as new starting values, the monotonicity property guarantees convergence to X,n,l 
In this way all the roots can be approximated in decreasing order. 

In finite-precision arithmetic the deflation process will generally change the 
remaining zeros: A transformation into the form (24) is affected by rounding errors, 
and further perturbations occur by deleting the small nonzero value f(X), if A = X. 

Generally, the remaining roots can be regarded as exact roots of a perturbed 
polynomial f E P . As indicated in Section 3, the sensitivity of the roots with respect 
to perturbations in the polynomial coefficients is determined by their condition 
number (see (15)) which depends on the representation of f. Thus we have to take 
care that transformations do not destroy a well-conditioned form of f, especially if 
the base points of f are shifted step by step to compute the divided differences. 

For example, if we already have base points Zk close to roots [k 0 A for some k, 
then we can keep them fixed during the approximation of A. This is possible by 
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using partial shift transformations (8). Conversely, if f E P,, is given in ill-condi- 
tioned form, then appropriate transformations shifting all base points to approxima- 
tions of the roots will improve the condition number of the roots. In this case we can 
hope that later transformations and deflation steps will not change these roots too 
much. This is confirmed by Example 1 below. 

Example 1. We consider Larkin's method given by (18) and choose m = 2 
(convergence order 1.84). Two versions of the method are compared with each other: 

(i) The usual definition according to (2) and (3) is used to compute the divided 
differences f. and f. for i = j(-1)j - m. Always, the same given representation of 
f E P,1 (or of the computed deflated polynomials of smaller degree) is evaluated. We 
speak of the " nonshift version" of the iteration method. 

(ii) A "shift version" computes the divided differences fij, i = j - m (1) j, applying 
algorithm (7n) ("complete shifting") or algorithm (8) ("partial shifting"). The shift 
version of Larkin's method uses (19) or (20). 

Let fi be a polynomial of degree n = 16 with the roots Xi = i + 0.1, i = 1(1)16, 
given in standard form (all expansion points 0, leading coefficient 1). To compute all 
the roots of fi the first starting values were chosen near x = 0; after a deflation step 
the iteration was restarted with some of the previous approximation points zJ 1' 

Z-2 .... For this choice our theorem guarantees monotonic convergence from 
below. Therefore, the zeros are determined in increasing order, which usually keeps 
the deflation stable (see Wilkinson [8], Jenkins and Traub [9]). An iteration was 
terminated if monotonicity was violated. The computations were performed in 
double precision (60 binary digit mantissa) on a UNIVAC 1100/82. 

We consider the maximum relative error 

e:= max 
i= 1(1)16 lxii 

where Xi denotes the numerical approximation to the root Xi. Both versions were 
tested several times with slightly changed initial points. As average values for e we 
obtained 

e = 4.8 10-9 for the nonshift version, 
e = 8.5 10-9 for the shift version. 

In many cases the relative error became maximal for the approximation of X12 = 12.1. 
In fact, X12 is one of the most sensitive roots of fi as indicated by its condition 
number (= 3 - 1010). Working with 60 binary digit precision we can hardly expect 
more than 9 correct decimal figures in the computed X12, so that the results are quite 
satisfactory with respect to the limiting accuracy. This was confirmed when we tried 
to improve the computed values Xi by choosing them as starting values for a series of 
additional approximation steps. In this procedure we always iterated in the original 
polynomial fi in order to prevent error propagation arising from shift transforma- 
tions or deflation steps. For a particular root one or two regula falsi steps (11) were 
applied. The relative error in X12, for example, could be reduced only to 2- 10-9. 
This shows that the deflation process did not diminish the attainable accuracy too 
much. Moreover, a moderate number of shift transformations seems to be numeri- 
cally not dangerous. In this example, we had an average number of 10 iteration steps 
per root, which implies a total of roughly 150 shift transformations. 
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Remark. In case of Larkin's nonshift version the computation of the divided 
differences - j =- m-m(1)j, requires 0(m) operations, but we need O(m2) 
operations to obtain the values in (19) or the difference Z?1 - Zk in (20) solving 
a triangular system. Thus it is cheaper to use the original (nonshift) version of 
Larkin's method for large m. Yet, if we confine ourselves to order m < 3 the shift 
version is more economical. 

Example 2. We consider the iteration method defined by formula (14) and 
Larkin's method with m = 2 in order to test their behavior near both simple and 
multiple roots. Shift transformations are used to determine the roots of 

f2(x):= (x + 1)2(x - 1)2(x - 3). 

We set a := 0.25 in (14). The results are listed in Table 1. 

TABLE 1 
Approximation of the simple root X5 = 3 and the double root X 3 = = 4 1. 

Iteration Method defined Larkin's method 
index by (14), a = 0.25 (m = 2) 

0 3.3 3.3 
1 3.0006114 3.0203753 
2 2.9999442 3.0016795 
3 3.0000000 3.0000117 
4 3.0000000 

0 1.1 1.1 
1 1.0269207 1.0344681 
2 0.9936201 1.0208248 
3 0.9967069 1.0116232 

14 1.0000000 1.0000141 

The approximation of the double root XI = = -1 also shows a superiority of 
formula (14). Similar results have been obtained for other values a e- [0, 11, e.g., for 
a = 1 (Muller's method). For a < 0 the speed of convergence decreases. 

Exampke 3. In case 
Zj= Zj11 

= 
Zj-2, 

formula (14) with a:= 1/(n - 1) corre- 
sponds to Laguerre's method (for f E- Pn), which converges very fast for large 
starting values Izol ?> iX,, i = I(I)n. If zj, zj-1, andZj 2are large and distinct, we 
do not know the best choice for a in general. Considering the polynomial f(z) n 

and, for example, zj: cz11,: c 2z- 2' 0 < c < 1, one calculates that the optimal 
value of a (for which formula (14) yields zj+1 = X = 0) lies between 1/(n - 1) and 
1, and a tends to 1/(n - 1) for c --+ 1. Since numerical tests with (14) show that the 
average number of iterations is about the same for all a E- [0, 11, it is reasonable to 
iterate always with a: 1/(n - 1). With this choice we tested the behavior of (14) 
and compare it again with Larkin's method (see Table 2). Since the operation count 
for the evaluation of (14) is as high as for a Larkin step of order 4, we choose m = 4 
in (1 8). The considered polynomial is 12 from Example 2. To keep the iterates real we 
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applied a regula falsi step (11) if the square root in (14) became imaginary (this case 
occurred only once in the example). 

TABLE 2 

Start with large lzol . The notation "(r.f.)" indicates a regula falsi step (see text). 

Iteration Method defined Larkin's method 
index by (14), a = 0.25 (m = 4) 

0 100 100 
1 3.5431 50.3 
2 3.5431 39.6 
3 3.2172 (r.f.) 30.7 
4 2.9160 23.6 

8 3.0000000 8.17 

To approximate the root X. = 3 up to 8 decimal digits Larkin's method needs 17 
iteration steps, more than twice as much as formula (14). 

Added in proof. In the meantime we noticed that Larkin's rootfinding method has 
been discovered already in 1958 by G. Opitz, Z. Angew. Math. Mech., v. 38, 1958, 
pp. 276-277; cf. also G. Opitz, Z. Angew. Math. Mech., v. 41, 1961, pp. T48-T50. 
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